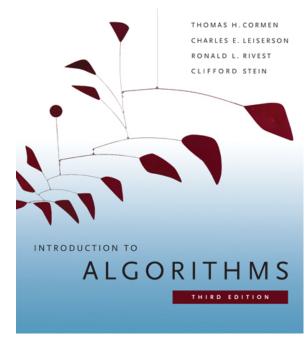
6.006- Introduction to Algorithms

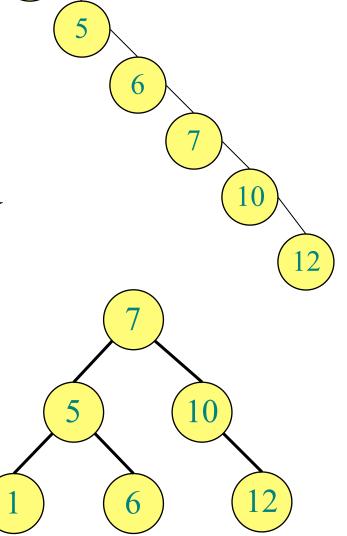


Lecture 4

Prof. Piotr Indyk

Lecture Overview

- Review: Binary Search Trees
- Importance of being balanced
- Balanced BSTs
 - -AVL trees
 - definition
 - rotations, insert



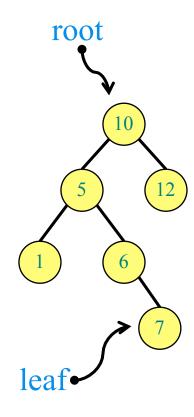
Binary Search Trees (BSTs)

- Each node x has:
 - key[x]
 - Pointers: left[x], right[x], p[x]
- Property: for any node x:
 - For all nodes y in the left subtree of x:

$$\text{key}[y] \leq \text{key}[x]$$

– For all nodes y in the right subtree of x:

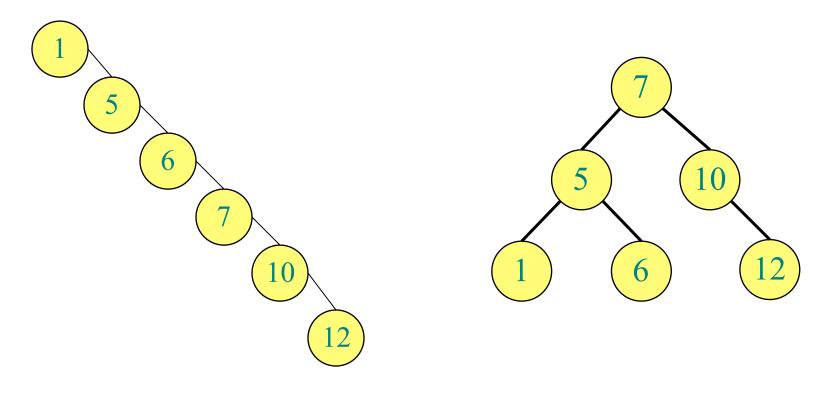
$$\text{key}[y] \ge \text{key}[x]$$



height = 3

The importance of being balanced

for n nodes:

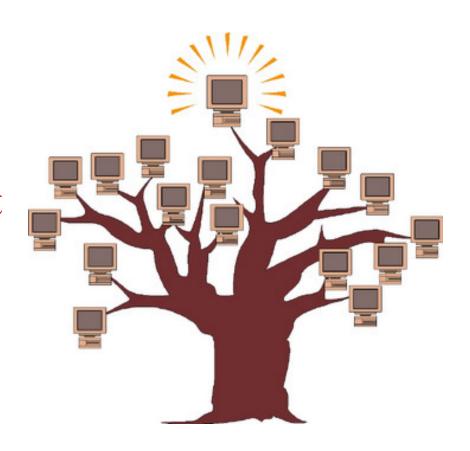


$$h = \Theta(\log n)$$

$$h = \Theta(n)$$

Balanced BST Strategy

- Augment every node with some data
- Define a local invariant on data
- Show (prove) that invariant guarantees
 Θ(log n) height
- Design algorithms to maintain data and the invariant



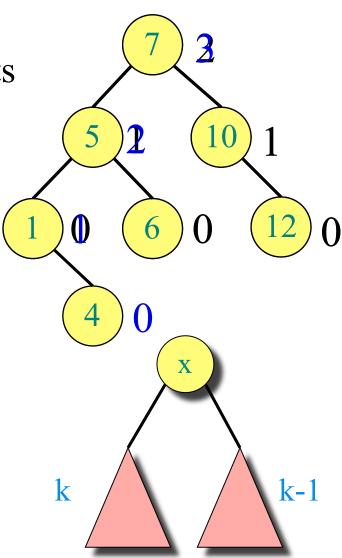
AVL Trees: Definition

[Adelson-Velskii and Landis'62]

• **Data**: for every node, maintain its height ("augmentation")

- Leaves have height 0
- NIL has "height" -1

• Invariant: for every node x, the heights of its left child and right child differ by at most 1



AVL trees have height $\Theta(\log n)$

Invariant: for every node x, the heights of its left child and right child differ by at most 1

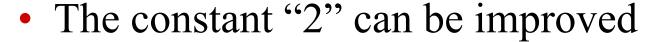
 Let n_h be the minimum number of nodes of an AVL tree of height h

• We have $n_h \ge 1 + n_{h-1} + n_{h-2}$

$$\Rightarrow n_h > 2n_{h-2}$$

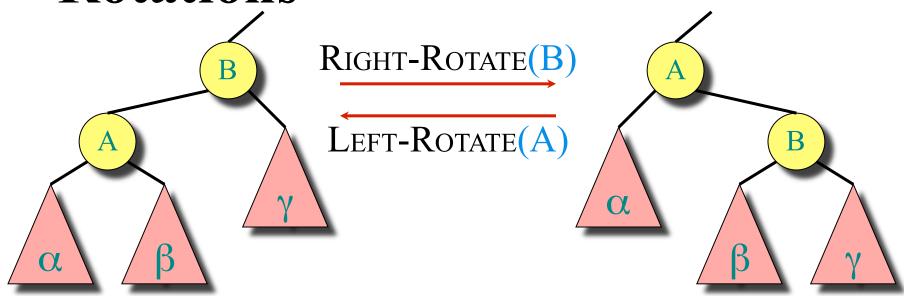
$$\Rightarrow n_h > 2^{h/2}$$

$$\Rightarrow$$
 h < 2 lg n_h



How can we maintain the invariant?

Rotations

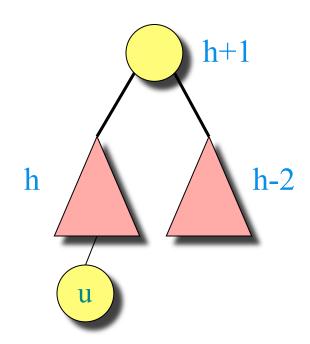


Rotations maintain the inorder ordering of keys:

•
$$a \in \alpha, b \in \beta, c \in \gamma \implies a \le A \le b \le B \le c$$
.

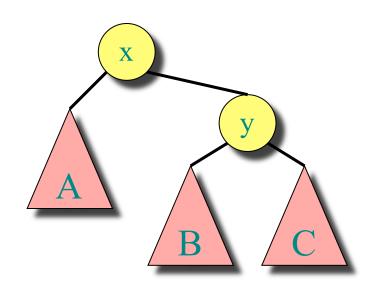
Insertions

- Insert new node u as in the simple BST
 - Can create imbalance
- Work your way up the tree, restoring the balance
- Similar issue/solution when deleting a node

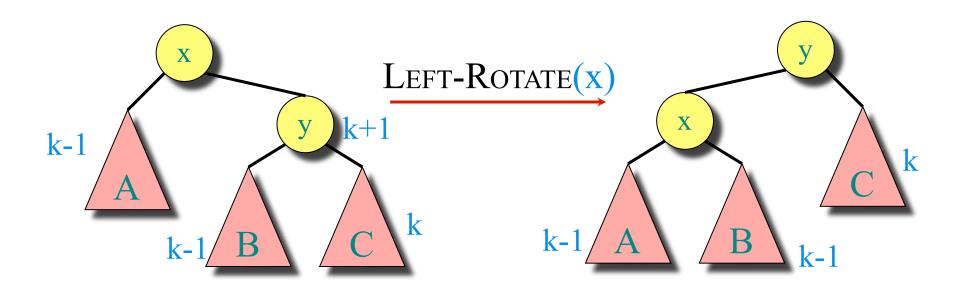


Balancing

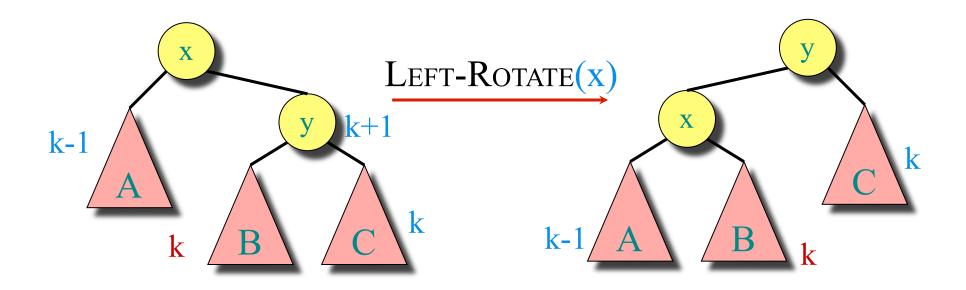
- Let x be the lowest "violating" node
 - We will fix the subtree of x and move up
- Assume the right child of x is deeper than the left child of x (x is "right-heavy")
- Scenarios:
 - Case 1: Right child y of x is right-heavy
 - Case 2: Right child y of x is balanced
 - Case 3: Right child y of x is left-heavy



Case 1: y is right-heavy

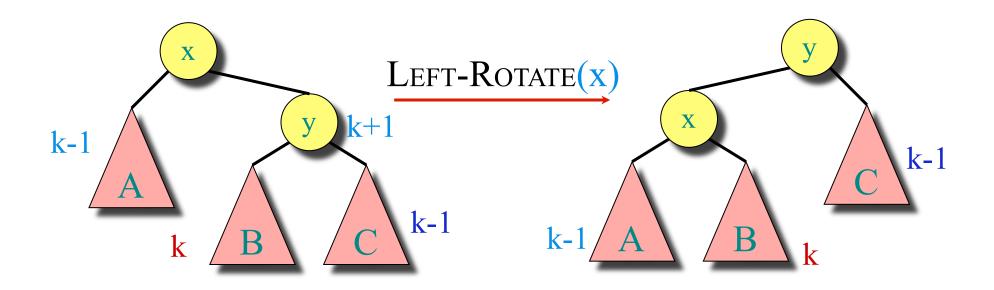


Case 2: y is balanced



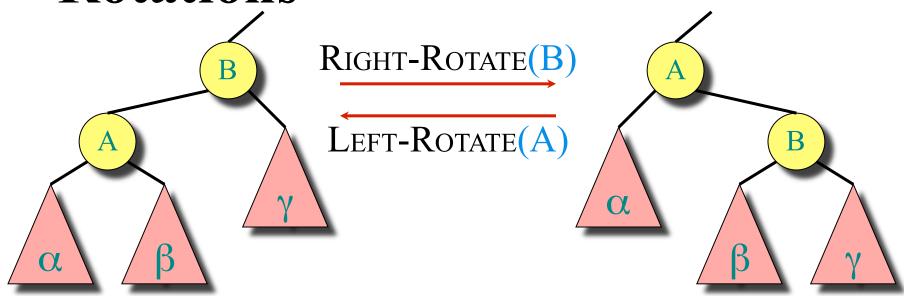
Same as Case 1

Case 3: y is left-heavy



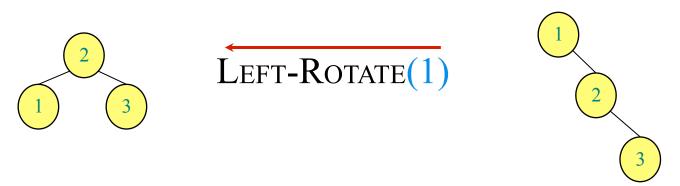
Need to do more ...

Rotations

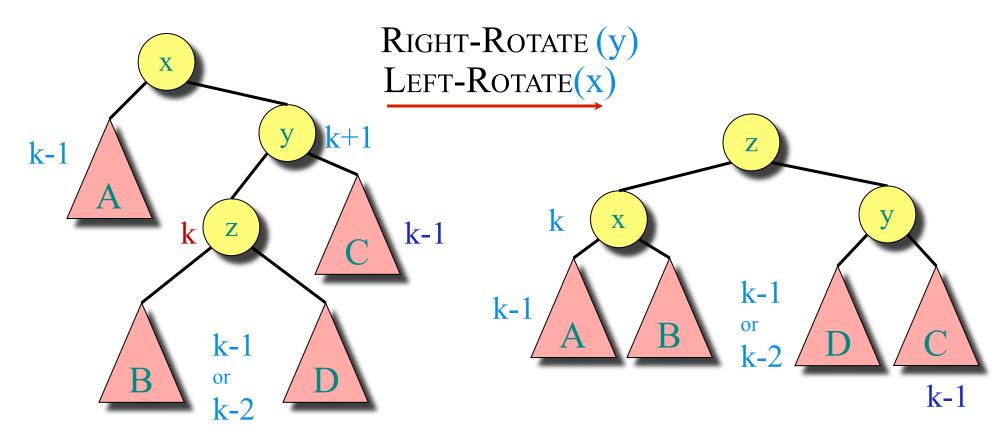


Rotations maintain the inorder ordering of keys:

•
$$a \in \alpha, b \in \beta, c \in \gamma \implies a \le A \le b \le B \le c$$
.



Case 3: y is left-heavy

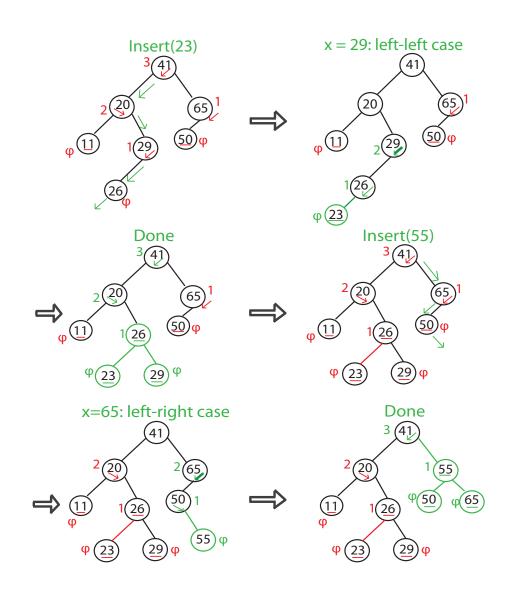


And we are done!

Conclusions

- Can maintain balanced BSTs in O(log n) time per insertion
- Search etc take O(log n) time

Examples of insert/balancing

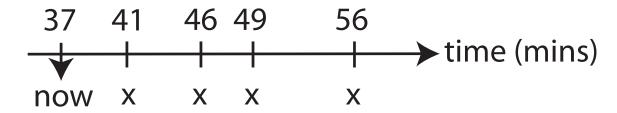


Balanced Search Trees ...

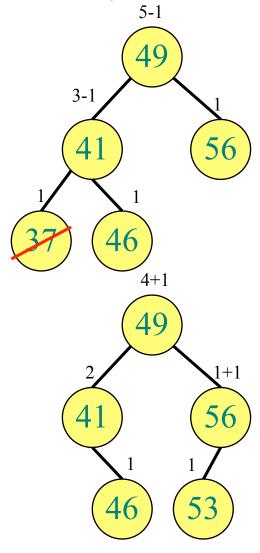
- AVL trees (Adelson-Velsii and Landis 1962)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Scapegoat trees (Galperin and Rivest 1993)
- Treaps (Seidel and Aragon 1996)
- •

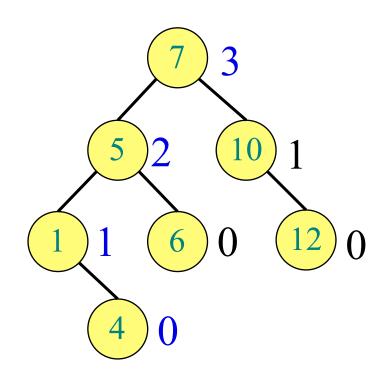
BST for runway reservation system

• R = (37, 41, 46, 49, 56) current landing times



- remove t from the set when a plane lands R = (41, 46, 49, 56)
- add new t to the set if no other landings are scheduled within < 3 minutes from t
 - 44 => reject (46 in R)
 - 53 => ok
- delete, insert, conflict checking take O(h), where
 h is the height of the tree





And some people like to do nothing