6.006- Introduction to Algorithms

Lecture 4
Prof. Piotr Indyk

 Balanced BSTs

Lecture Overview

* Review: Binary Search Trees
* Importance of being balanced

— AVL trees e

e definition

* rotations, insert e @

Binary Search Trees (BSTSs)

 Each node x has: root

— key[x] \v
— Pointers: left[x], right[x], p[x] @
* Property: for any node x: e @
— For all nodes v 1n the left subtree of x:
keyly] < key[x] O &
— For all nodes vy in the right subtree of x: ©
keyly] = key[x] leaff

height = 3

The importance of being balanced

for n nodes:

h = 0O(log n) h=0®(n)

Balanced BST Strategy

* Augment every node
with some data

 Define a local invariant
on data

* Show (prove) that

Invariant guarantees
O(log n) height

* Design algorithms to
maintain data and the
invariant

AVL Trees: Definition
| Adelson-Velskii and Landis’62]

* Data: for every node, maintain its
height (“augmentation”)

— Leaves have height 0
— NIL has “height” -1 G 0 e 0 @ 0

» Invariant: for every node x, the
heights of 1ts left child and right

child differ by at most |
k k-1

AVL trees have height ®(log n)

Invariant: for every node x, the heights of its left
child and right child differ by at most |

* Let n, be the minimum number of
nodes of an AVL tree of height h h

 Wehaven, > l+n, ,+n,,
=Ny > 20, h-1 h-2
=n, > 2°

* The constant “2” can be improved

How can we maintain the invariant ?

Rotations

e RIGHT-ROTATE(B) e
e I:EFT—ROTATE(A) A a

Rotations maintain the inorder ordering of keys:
caco,beEpP,cEYy =a=<sAd=<sb=sB=c.

)Ql(I:EFT-ROTATE(I)

Insertions

* Insert new node u as in the
simple BST

— Can create imbalance

* Work your way up the tree,
restoring the balance

e Similar 1ssue/solution when
deleting a node

h+1

h-2

Balancing

* Let x be the lowest “violating”
node

— We will fix the subtree of x and
move up

e Assume the right child of x 1s
deeper than the left child of x (x 1s
“right-heavy”)

* Scenarios:

— Case 1: Right child y of x 1s
right-heavy

— Case 2: Right child y of x 1s
balanced

— Case 3: Right child y of x 1s
left-heavy

Case 1: y is right-heavy

Case 2: y is balanced

Same as Case 1

Case 3: v is left-heavy

Need to do more ...

Rotations

e RIGHT-ROTATE(B) e
e I:EFT—ROTATE(A) A a

Rotations maintain the inorder ordering of keys:
caco,beEpP,cEYy =a=<sAd=<sb=sB=c.

)Ql(I:EFT-ROTATE(I)

Case 3: v is left-heavy

RIGHT-ROTATE ()
LEFT-ROTATE(X)

And we are done!

Conclusions

« Can maintain balanced BSTs in O(log n)
time per 1nsertion

* Search etc take O(log n) time

Examples of insert/balancing

Insert(23) X = 29: left-left case

(4D

@ ®
D) @

=

Balanced Search Trees ...

* AVL trees (Adelson-Velsu and Landis 1962)
« Red-black trees (see CLRS 13)
* Splay trees (Sleator and Tarjan 1985)

* Scapegoat trees (Galperin and Rivest 1993)
* Treaps (Seidel and Aragon 1996)

BST for runway reservation system

« R=(37,41, 46,49, 56) current landing times

37 41 46 49 56
% | L | » time (mins)
now X X X X

* remove t from the set when a plane lands
R = (41, 46, 49, 56)

* add new t to the set if no other landings are
scheduled within < 3 minutes from t

* 44 =>reject (46 iIn R)
« 53 =>0k

 delete, nsert, conflict checking take O(h), where
h 1s the height of the tree

And some people
like to do nothing

