Skip to main content
  1. /classes/
  2. Classes, Fall 2025/
  3. CS 2010 Fall 2025: Course Site/

cs2010 Notes: 09-12 K-Maps

·245 words·2 mins·

Simplifying Circuits
#

Here’s a truth table:

A B Out
0 0 0
0 1 1
1 0 0
1 1 1

If we take the 1 terms and write this in SoP form:

AB + A’B

We can apply boolean algebra:

  • AB + A’B
  • = A(B+B')
  • = A(1)
  • = A

There’s a trick to speed that up with visual pattern matching, called a K-map (Karnaugh Map).

A' A
B' 0 1
B 0 1

Look for even-size rectangles of 1’s and circle them.

And the rectangle is in the A column, so our simplified expression is just A.

A B C Out
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

Grey code - each adjacent cell differs by one bit.

A’B' A’B AB AB'
C 0 0 0 0
C' 0 1 1 1

-> AC’ + BC'

Let’s consider a k-map of ABC that will resolve to just A.

A’B' A’B AB AB'
C 0 0 1 1
C' 0 0 1 1

Let’s consider a k-map of ABC that will resolve to just B'.

A’B' A’B AB AB'
C 1 0 0 1
C' 1 0 0 1

This gives us a two-by-two square of 1’s that wraps around the edge.

We can go to 4 variables with a 4x4 table. More still works, but it gets annoying.

Nat Tuck
Author
Nat Tuck